4.6 Article

Raman spectroscopic monitoring of droplet polymerization in a microfluidic device

期刊

ANALYST
卷 131, 期 9, 页码 1027-1033

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b603693g

关键词

-

向作者/读者索取更多资源

Microfluidic methodologies are becoming increasingly important for rapid formulation and screening of materials, and development of analytical tools for multiple sample screening is a critical step in achieving a combinatorial 'lab on a chip' approach. This work demonstrates the application of Raman spectroscopy for analysis of monomer composition and degree of conversion of methacrylate-based droplets in a microfluidic device. Droplet formation was conducted by flow focusing on the devices, and a gradient of component composition was created by varying the flow rates of the droplet-phase fluids into the microchannels. Raman data were collected using a fiber optic probe from a stationary array of the droplets/particles on the device, followed by partial least squares (PLS) calibration of the first derivative (1600 cm(-1) to 1550 cm(-1)) allowing successful measurement of monomer composition with a standard error of calibration (SEC) of +/- 1.95% by volume. Following photopolymerization, the percentage of double bond conversion of the individual particles was calculated from the depletion of the normalized intensity of the C=C stretching vibration at 1605 cm(-1). Raman data allowed accurate measurement of the decrease in double bond conversion as a function of increasing crosslinker concentration. The results from the research demonstrate that Raman spectroscopy is an effective, on-chip analytical tool for screening polymeric materials on the micrometre scale.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据