4.7 Article

Hyperoxia stimulates an Nrf2-ARE transcriptional response via ROS-EGFR-PI3K-Akt/ERK MAP kinase signaling in pulmonary epithelial cells

期刊

ANTIOXIDANTS & REDOX SIGNALING
卷 8, 期 1-2, 页码 43-52

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ars.2006.8.43

关键词

-

资金

  1. NHLBI NIH HHS [1P50HL073994, HL66109] Funding Source: Medline
  2. NIEHS NIH HHS [ES11863] Funding Source: Medline
  3. NATIONAL HEART, LUNG, AND BLOOD INSTITUTE [P50HL073994, R01HL066109] Funding Source: NIH RePORTER
  4. NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES [Z01ES100513, R01ES011863, ZIAES100513] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Nuclear factor erythroid 2-related factor (Nrf2) confers protection against cell death induced by hyperoxia and other proapoptotic stimuli. Because phosphoinositide-3-kinase (PI3K)/Akt signaling promotes cell survival, the significance of this pathway in mediating reactive oxygen species (ROS)-dependent hyperoxia-induced Nrf2 activation was investigated in the murine pulmonary epithelial cell line, C10. Inhibition of the PI3K pathway markedly attenuated hyperoxia-induced Nrf2 translocation and ARE (antioxidant response element)-mediated transcription. Consistent with this, hyperoxia markedly stimulated the activation of PI3K pathway, while an NADPH oxidase inhibitor and an antioxidant prevented such activation. The inhibition of Akt activity using a pharmacological inhibitor markedly attenuated Nrf2 translocation and ARE-driven expression. Moreover, overexpression of a dominant-negative Akt mutant attenuated the transcription, whereas a constitutively active mutant stimulated it. These results suggest that PI3K/Akt signaling regulates Nrf2 activation by hyperoxia. Inhibition of the PI3K pathway prevented hyperoxia-stimulated Akt and ERK1/2 kinase activation, which is critical for Nrf2-mediated transcription. Likewise, the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, AG1478, blocked hyperoxia-stimulated Akt and ERK1/2 phosphorylation, Nrf2 nuclear accumulation, and ARE-driven transcription. Consistent with this result, an NADPH oxidase inhibitor blocked byperoxia-stimulated EGFR phosphorylation, which was correlated with the attenuation of Akt and ERK activation. Collectively, our data suggest that EGFR-PI3K signaling through Akt and ERK kinases regulates ROS-dependent, hyperoxia-induced Nrf2 activation in pulmonary epithelial cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据