4.4 Article

Modeling Hysteretic Deteriorating Behavior Using Generalized Prandtl Neural Network

期刊

JOURNAL OF ENGINEERING MECHANICS
卷 141, 期 8, 页码 -

出版社

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)EM.1943-7889.0000925

关键词

Hysteresis; Deterioration; Neural network; Dynamic analysis

向作者/读者索取更多资源

In this paper, a new kind of activation function using a particular combination of stop and play operators is proposed and used in a feedforward neural network to improve its learning capability in the identification of nonlinear hysteretic material behavior with both stiffness and strength degradation. The new neuron and neural network are referred to as a deteriorating stop and generalized Prandtl neural network, respectively. To show the generality of the proposed neural network, it is trained on several data sets generated by various mathematical models of material hysteresis with and without deterioration as well as on a set of experimental data with very high nonlinearity, including severe damage. In each case, the training is successful, and the generalized Prandtl neural network response precision is very high. Also, using the proposed neural network, a neuro-modeler is designed and used in the dynamic analysis of a one-story shear frame under seismic loads with severe damage. A comparison of the results shows that the generalized Prandtl neural network type of the neuro-modeler is more successful than the previously proposed Prandtl neural network type. (C) 2015 American Society of Civil Engineers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据