4.2 Article

More about rotons in superfluid helium 4

期刊

JOURNAL OF LOW TEMPERATURE PHYSICS
卷 142, 期 1-2, 页码 91-99

出版社

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s10909-005-9413-8

关键词

condensate fraction; density instabilities; superfluidity

向作者/读者索取更多资源

In a recent paper(1) it was argued that rotons in superfluid helium 4 are the soft modes announcing a charge density wave that leads to the crystal: rotons are a normal state property. A small superfluid condensate acts to hybridize quasiparticles and soft density fluctuations - hence a level repulsion that lowers the energy: superfluidity is energetically favourable. A shallow roton implies a very small condensate density, as found in He4: what we need is a saturation mechanism. The clue is depletion due to quantum fluctuations. In (1) we assumed that such a depletion was drawn from the condensate itself: superfluidity then disappears in the liquid if the roton gap is too small. Here we explore an alternate possibility: quantum fluctuations are drawn from the normal fluid. We reach the opposite conclusion: superfluidity persists down to the spinodal limit where the roton gap vanishes, with an unusual power law dependence. We briefly mention the possible extension of that argument to a frozen charge density wave: in a toy 1d model it might shed light on the features that favour supersolids.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据