4.7 Article

Dirigent proteins in conifer defense: gene discovery, phylogeny, and differential wound- and insect-induced expression of a family of DIR and DIR-like genes in spruce (Picea spp.)

期刊

PLANT MOLECULAR BIOLOGY
卷 60, 期 1, 页码 21-40

出版社

SPRINGER
DOI: 10.1007/s11103-005-2226-y

关键词

conifer genomics; gymnosperm; lignan and lignin formation; Pissodes strobi; plant herbivore defense; plant-insect interactions

向作者/读者索取更多资源

The outer stem tissues of conifers provide a durable constitutive and inducible defense barrier consisting of suberized or lignified periderm, sclereids, a network of terpenoid-filled resin ducts, and phenolic phloem parenchyma cells. Microarray gene expression profiling of Sitka spruce (Picea sitchensis) bark attacked by stem-boring weevils (Pissodes strobi) or through mechanical wounding demonstrated significant accumulation of transcripts resembling dirigent protein (DIR) genes. To investigate this gene family and its spatial and temporal patterns of expression in conifer defense, we isolated cDNAs representing 19 unique DIR and DIR-like genes from Sitka spruce, white spruce (P. glauca), and interior spruce (P. glauca x engelmannii). Sequence alignments also identified a large number of DIR-like proteins in other plant species, which share several conserved protein motifs with known DIR proteins. Phylogenetic analysis of 72 DIR and DIR-like proteins suggests five distinct subfamilies, DIR-a and four DIR-like subfamilies (DIR-b, DIR-c, DIR-d and DIR-e). Previously characterized members of the DIR-a subfamily direct stereoselective phenolic coupling reactions in the formation of lignans and possibly lignins. The spruce genes identified here are members of the DIR-a and DIR-b subfamilies. Using gene-specific quantitative real-time PCR we measured constitutive expression for six DIR-a genes and three DIR-like genes in different stem tissues, green shoot tips, and roots of Sitka spruce. DIR-like genes revealed ubiquitous high expression in all tissues. In contrast, the six DIR-a genes showed a gradient of transcript abundance in stem tissues with highest levels in the outer cortex and lowest levels in the inner xylem. Gene-specific transcript profiling of six DIR-a genes confirmed rapid and strong accumulation (up to 500-fold) in wound- and weevil-induced stem bark and xylem. These findings suggest a role for spruce DIR genes in constitutive and induced phenolic defense mechanisms against stem-boring insects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据