4.4 Article

Effects of ball milling on the physical and electrochemical characteristics of nickel hydroxide powder

期刊

JOURNAL OF APPLIED ELECTROCHEMISTRY
卷 36, 期 1, 页码 97-103

出版社

SPRINGER
DOI: 10.1007/s10800-005-9045-3

关键词

ball milling; electrochemical performance; nickel hydroxide; particle and crystallite size; pasted nickel electrode; structural characteristics

向作者/读者索取更多资源

Nickel hydroxide powder was modified by the method of ball milling, and the physical properties of both the ball-milled and un-milled nickel hydroxide were characterized by scanning electron microscopy, specific surface area, particle size distribution and X-ray diffraction. It was found that the ball milling processing could obviously increase the surface area, decrease the particle and crystallite size, and reduce the crystallinity of beta-Ni(OH)(2), which was advantageous to the improvement of the electrochemical activity of nickel hydroxide powder. Electrochemical performances of pasted nickel electrodes using the ball-milled nickel hydroxide as an active material were investigated, and were compared with those of the electrodes prepared with the un-milled nickel hydroxide. Charge/discharge tests showed that the ball-milled nickel hydroxide electrodes exhibited better performances in the charging efficiency, specific discharge capacity, active material utilization and discharge voltage. The improvement of the performances of beta-Ni(OH)(2) through ball milling could be attributed to the better reaction reversibility, higher coulombic efficiency, higher oxygen evolution potential and lower electrochemical impedance, as indicated by the cyclic voltammetry and electrochemical impedance spectroscopy studies. Thus, ball milling was an effective method to modify the physical properties and enhance the electrochemical performances of nickel hydroxide powder for the active material of rechargeable alkaline nickel batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据