4.4 Review

The role of mitochondrial respiration in physiological and evolutionary adaptation

期刊

BIOESSAYS
卷 28, 期 9, 页码 890-901

出版社

WILEY
DOI: 10.1002/bies.20463

关键词

-

向作者/读者索取更多资源

Aerobic mitochondria serve as the power sources of eukaryotes by producing ATP through oxidative phosphorylation (OXPHOS). The enzymes involved in OXPHOS are multisubunit complexes encoded by both nuclear and mitochondrial DNA. Thus, regulation of respiration is necessarily a highly coordinated process that must organize production, assembly and function of mitochondria to meet an organism's energetic needs. Here I review the role of OXPHOS in metabolic adaptation and diversification of higher animals. On a physiological timescale, endocrine-initiated signaling pathways allow organisms to modulate respiratory enzyme concentration and function under changing environmental conditions. On an evolutionary timescale, mitochondrial enzymes are targets of natural selection, balancing cytonuclear coevolutionary constraints against physiological innovation. By synthesizing our knowledge of biochemistry, physiology and evolution of respiratory regulation, I propose that we can now explore questions at the interface of these fields, from molecular translation of environmental cues to selection on mitochondrial haplotype variation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据