4.7 Article

Investigation of nanocapsules stabilization by amorphous excipients during freeze-drying and storage

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ejpb.2006.01.015

关键词

freeze-drying; nanocapsules; vitrification; crystallization; cryoprotectant; electron spectroscopy for chemical analysis

向作者/读者索取更多资源

Freeze-drying was recently applied to improve the long-term storage stability of nanoparticles. Nanocapsules have a thin polymeric envelope that may not withstand the stresses of such process. So, cryoprotectants and lyoprotectants are usually added to the formulation to protect these vectors during freezing and desiccation steps. The aim of this paper was to investigate the importance of the vitrification of cryoprotectants on the stabilization of nanocapsulles during freezing, desiccation, and storage steps. Furthermore, the effect of stabilizer crystallization on the conservation of nanocapsules properties was studied. Finally, the effect of temperature storage and relative humidity on the stability of nanocapsules was tested through an accelerated stability study. Results indicate that nanocapsules stabilization during the different steps of freeze-drying requires their dispersion within a vitrified matrix of amorphous excipient to protect them against the stress of freezing and dehydration. The crystallization of this stabilizer during the freezing, the desiccation or the storage steps can destabilize these fragile particles. Electron spectroscopy for chemical analysis revealed the adsorption of nanocapsules at the interface ice/liquid during the freezing step. Such adsorption must be avoided in the case of freeze-drying of immuno-nanoparticles to preserve the native structure of proteins attached to their surface. (c) 2006 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据