3.9 Article

Multiparametric cell cycle analysis by automated microscopy

期刊

JOURNAL OF BIOMOLECULAR SCREENING
卷 11, 期 6, 页码 586-598

出版社

SAGE PUBLICATIONS INC
DOI: 10.1177/1087057106289406

关键词

cell-based assays; ArrayScan (TM); high-content analysis; cell-cycle; U-2OS

向作者/读者索取更多资源

Cell cycle analysis using flow cytometry (FC) to measure cellular DNA content is a common procedure in drug mechanism of action studies. Although this technique lends itself readily to cell lines that grow in suspension, adherent cell cultures must be resuspended in a cumbersome and potentially invasive procedure that normally involves trypsinization and mechanical agitation of monolayer cultures. High-content analysis (HCA), an automated microscopy-based technology, is well suited to analysis of monolayer cell cultures but provides intrinsically less accurate determination of cellular DNA content than does FC and thus is not the method of choice for cell cycle analysis. Using Cellomics's ArrayScan (TM) reader, the authors have developed a 4-color multiparametric HCA approach for cell cycle analysis of adherent cells based on detection of DNA content (4,6-diamidino-2-phenylindole [DAPI] fluorescence), together with the known cell cycle markers bromo-2-deoxyuridine (BrdU) incorporation, cyclin B1 expression, and histone H3 (Ser28) phosphorylation within a single cell population. Considering all 4 markers together, a reliable and accurate quantification of cell cycle phases was possible, as compared with flow cytometric analysis. Using this assay, specific cell cycle blocks induced by treatment with thymidine, paclitaxel, or nocodazole as test drugs were easily monitored in adherent cultures of U-2 OS osteosarcoma cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据