4.7 Article

On modeling the micro-indentation response of an amorphous polymer

期刊

INTERNATIONAL JOURNAL OF PLASTICITY
卷 22, 期 6, 页码 1123-1170

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijplas.2005.07.006

关键词

viscoplastic material; micro-indentation

向作者/读者索取更多资源

Interest in instrumented indentation experiments as a means to estimate mechanical properties has grown rapidly in recent years. Although numerous nano/micro-indentation experimental studies on polymeric materials have been reported in the literature, a corresponding methodology for extracting material property information from the experimental data does not exist. This situation for polymeric materials exists primarily because baseline numerical analyses of sharp indentation using appropriate large deformation constitutive models for the nonlinear viscoelastic-plastic response of these materials appear not to have been previously reported in the literature. An existing, widely used theory for amorphous polymers (e.g. [Boyce, M., Parks, D., Argon, A.S., 1988. Large inelastic deformation of glassy polymers. Part 1: Rate dependent constitutive model. Mechanics of Materials 7, 15-33; Arruda, E.M., Boyce, M.C., 1993. Evolution of plastic anisotropy in amorphous polymers during finite straining. International Journal of Plasticity 9, 697-720]) has been recently found to lack sufficient richness to enable one to quantitatively reproduce the major features of the indentation load-versus-depth curves for some common amorphous polymers [Gearing, B.P., 2002. Constitutive equations and failure criteria for amorphous polymeric solids. Ph.D. thesis, Massachusetts Institute of Technology]. This study develops a new continuum model for the viscoelastic-plastic deformation of amorphous polymeric solids. We have applied the constitutive model to capture salient features of the mechanical response of the amorphous polymeric solid poly(methyl methacrylate) (PMMA) at ambient temperature and stress states under which this material does not exhibit crazing. We have conducted compression-tension strain-controlled experiments, as well as stress-con trolled compression-creep experiments, and these experiments are used to calibrate the material parameters in the constitutive model for PMMA. We have implemented our constitutive model in a finite-element computer program, and using this finite-element program we have simulated micro-indentation experiments on PMMA. We show that our constitutive model and finite element simulations reproduce the experimentally-measured indentation load-versus-depth response with reasonable accuracy. (c) 2005 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据