4.6 Article

Residues crucial for maintaining short paths in network communication mediate signaling in proteins

期刊

MOLECULAR SYSTEMS BIOLOGY
卷 2, 期 -, 页码 -

出版社

WILEY
DOI: 10.1038/msb4100063

关键词

allosteric communications; conserved interconnectivity determinants; long-range interactions; network; robustness

资金

  1. Intramural NIH HHS Funding Source: Medline
  2. NCI NIH HHS [N01-CO-12400, N01CO12400] Funding Source: Medline

向作者/读者索取更多资源

Here, we represent protein structures as residue interacting networks, which are assumed to involve a permanent flowof information between amino acids. By removal of nodes from the protein network, we identify fold centrally conserved residues, which are crucial for sustaining the shortest pathways and thus play key roles in long-range interactions. Analysis of seven protein families (myoglobins, G-protein-coupled receptors, the trypsin class of serine proteases, hemoglobins, oligosaccharide phosphorylases, nuclear receptor ligand-binding domains and retroviral proteases) confirms that experimentally many of these residues are important for allosteric communication. The agreement between the centrally conserved residues, which are key in preserving short path lengths, and residues experimentally suggested to mediate signaling further illustrates that topology plays an important role in network communication. Protein folds have evolved under constraints imposed by function. To maintain function, protein structures need to be robust to mutational events. On the other hand, robustness is accompanied by an extreme sensitivity at some crucial sites. Thus, here we propose that centrally conserved residues, whose removal increases the characteristic path length in protein networks, may relate to the system fragility.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据