4.5 Article

Fabrication of a new tubular fibrous PLCL scaffold for vascular tissue engineering

期刊

JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION
卷 17, 期 12, 页码 1359-1374

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1163/156856206778937244

关键词

poly(L-lactide-co-caprolactone); gel spinning; fibrous scaffold; vascular tissue engineering

向作者/读者索取更多资源

Biodegradable macroporous scaffolds have been developed for tissue-engineering applications. We fabricated and characterized a new tubular, macroporous, fibrous scaffold using a very elastic biodegradable co-polymer, poly(L-lactide-co-caprolactone) (PLCL, 5:5) in a gel-spinning process. A viscous PLCL solution was spun as a gel-phase under swirl-flow conditions and was subsequently fabricated to produce a tubular fibrous scaffold on a rotating cylindrical shaft in a methanol solution. The porosity and median pore size of the fibrous PLCL scaffolds were 55-75% and 120-150 mu m, respectively, using a 5-10% PLCL solution. The use of a 7.5% (w/v) solution resulted in scaffolds with tensile strength and elastic modulus of 3.39 MPa and 1.22 MPa, respectively. The scaffolds exhibited 500-600% elongation-at-break. The tensile strength and modulus of fibrous PLCL scaffolds were proven to decrease on lowering the concentration of the PLCL spinning solution; however, the tensile strength and modulus of fibrous PLCL scaffolds, produced from 5% solutions, are approximately 4-and 5-times higher than those of extruded PLCL scaffolds. These properties indicated that the fibrous PLCL scaffolds were very elastic and mechanically strong. The scaffolds appeared to be well interconnected between the pores as determined by SEM imaging analysis. In addition, the cell-seeding efficiency was 2-fold higher using gel-spun scaffolds than using extruded scaffolds. These results suggest that the gel-spun fibrous PLCL scaffold is an excellent matrix for vascular tissue-engineering applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据