4.4 Article

Recent advances in catalytic oxidation in supercritical water

期刊

COMBUSTION SCIENCE AND TECHNOLOGY
卷 178, 期 1-3, 页码 443-465

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/00102200500287159

关键词

catalysis; chemical synthesis; water; green chemistry; supercritical water oxidation

向作者/读者索取更多资源

This article summarizes recent research in homogeneous and heterogeneous catalytic oxidation in supercritical water. We consider both selective partial oxidation for chemical synthesis and complete oxidation for waste destruction. Recent advances in selective catalytic oxidation in supercritical water center around the conversion of p-xylene to terephthalic acid catalyzed homogeneously by MnBr2. Terephthalic acid yields of > 90 mol% can be achieved from reactions at 400 degrees C. Using water as the reaction medium provides genuine opportunities for both a more economical and more environmentally benign terephthalic acid production process. Recent advances in complete oxidation via catalysis in supercritical water include the demonstration of heteropolyacids as effective homogeneous oxidation catalysts, and alkali carbonates and carbons as effective heterogeneous catalysts. Additionally, progress has been made in screening transition metal oxide catalysts and determining the reaction-induced chemical and physical changes that take place in the hydrothermal environment. Bulk MnO2 is a good catalyst for complete oxidation because it combines high activity, hydrothermal stability, activity maintenance, and resistance to metal leaching under reaction conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据