4.7 Article

Current perspectives in intronic micro RNAs (miRNAs)

期刊

JOURNAL OF BIOMEDICAL SCIENCE
卷 13, 期 1, 页码 5-15

出版社

BMC
DOI: 10.1007/s11373-005-9036-8

关键词

fine-tuning of gene function; functional; structural genomics; gene expression; genetic regulation; intronic microRNA; miRNA biogenesis; miRNA; post-translational modification; regulatory gene

资金

  1. NCI NIH HHS [CA-85722] Funding Source: Medline
  2. NATIONAL CANCER INSTITUTE [R01CA085722] Funding Source: NIH RePORTER

向作者/读者索取更多资源

MicroRNAs (miRNAs), small single-stranded regulatory RNAs capable of interfering with intracellular messenger RNAs (mRNAs) that contain either complete or partial complementarity, are useful for the design of new therapies against cancer polymorphism and viral mutation. Numerous miRNAs have been reported to induce RNA interference (RNAi), a post-transcriptional gene silencing mechanism. Intronic miRNAs, derived from introns by RNA splicing and Dicer processing, can interfere with intracellular mRNAs to silence that gene expression. The intronic miRNAs differ uniquely from previously described intergenic miRNAs in the requirement of type II RNA polymerases (Pol-II) and spliceosomal components for its biogenesis. Several kinds of intronic miRNAs have been identified in Caenorhabditis elegans, mouse and human cells; however, neither their function nor application has been reported. To this day, the computer searching program for miRNA seldom include the intronic portion of protein-coding RNAs. The functional significance of artificially generated intronic miRNAs has been successfully ascertained in several biological systems such as zebrafishes, chicken embryos and adult mice, indicating the evolutionary preservation of this gene regulation system in vivo. Multiple miRNAs can be generated from the same cluster of introns; however, non-homologous miRNAs may have different targets and functions while homologous miRNA may be derived from different intronic clusters. Taken together, the model of intronic miRNA-mediated transgenic animals provides a tool to investigate the mechanism of miRNA-associated diseases in vivo and will shed light on miRNA-related therapies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据