4.2 Article

Studies of size effects on carbon nanotubes' mechanical properties by using different potential functions

期刊

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/15363830500538425

关键词

Size effect; carbon nanotube; Young's modulus; potential function

向作者/读者索取更多资源

We use molecular mechanics calculations to study size effects on mechanical properties of carbon nanotubes. Both single-walled nanotubes (SWNTs) and multi-walled nanotubes (MWNTs) are considered. The size-dependent Young's modulus decreases with the increasing tube diameter for a reactive empirical bond order (REBO) potential function. However, we observe a contrary trend if we use other potential functions such as the modified Morse potential function and the universal force field (UFF). Such confliction is only obtained for small tubes within cutoff diameters (3 nm for REBO and 1.5 nm for others). In light of these predictions, Young's moduli of large nanotubes concur with experimental results for all the potential functions. No matter which potential function is used, the Poisson's ratio decreases with the increasing tube diameter. We also study the chirality effects on mechanical properties of SWNTs. We find that the Young's moduli are insensitive to the chirality of nanotubes. The chirality effect on the Poisson's ratio is significant for the UFF but not the REBO or modified Morse potential functions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据