4.3 Article Proceedings Paper

Elastomeric and etectrically conductive materiats on basis of thermoplastic elastomers and their controlled manufacturing

期刊

PLASTICS RUBBER AND COMPOSITES
卷 35, 期 10, 页码 410-417

出版社

MANEY PUBLISHING
DOI: 10.1179/174328906X149691

关键词

thermoplastic elastomer; dynamic vulcanisate; carbon black; online electrical conductivity

向作者/读者索取更多资源

The present work presents a possibility to produce a rubber elastic and electrically conductive polymer material on the basis of dynamic vulcanisates. Thanks to the specific morphology of dynamic vulcanisates and the non-uniform carbon black distribution, carbon black filled dynamic vulcanisates can exhibit a very low percolation threshold of similar to 4 wt-%. Keeping the carbon black content low, a broad spectrum of resistivity properties can be achieved by variation of material factors like type and content of rubber phase and filler, concentration of cross-linking agent and compatibiliser and technological factors like mixing time respectively. In comparison with thermoplastic elastomers on the basis of block copolymers dynamic vulcanisates show a distinct lower percolation threshold. Up to a carbon black content of similar to 10 wt-% the mechanical properties of carbon black filled dynamic vulcanisates are not negative influenced essentially. To characterise the development of the carbon black dispersion and distribution processes and the conductivity properties in an internal mixer, the method of online measured electrical conductivity is suited very well for carbon black containing rubber mixtures. It could be shown in pre-investigations that this method promises to be a very useful tool for monitoring the mixing processes of carbon black filled dynamic vulcanisates in continuous mixing processes by means of extruders too.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据