4.5 Article

Nitric Oxide Functions as a Positive Regulator of Root Hair Development

期刊

PLANT SIGNALING & BEHAVIOR
卷 1, 期 1, 页码 28-33

出版社

TAYLOR & FRANCIS INC
DOI: 10.4161/psb.1.1.2398

关键词

auxin; nitric oxide; root hair; lettuce; arabidopsis; nos1 mutant; nia1; nia2 mutant

资金

  1. ANPCyT [PICT 1-6496-99, PICT 1-1445703]
  2. CONICET [PIP 898/98]
  3. Fundacion Antorchas
  4. UNMdP, Argentina

向作者/读者索取更多资源

The root epidermis is composed of two cell types: trichoblasts (or hair cells) and atrichoblasts (or non-hair cells). In lettuce (Lactuca sativa cv. Grand Rapids var. Rapidmor oscura) plants grown hydroponically in water, the root epidermis did not form root hairs. The addition of 10 mu M sodium nitroprusside (SNP), a nitric oxide (NO) donor, resulted in almost all rhizodermal cells differentiated into root hairs. Treatment with the synthetic auxin 1-naphthyl acetic acid (NAA) displayed a significant increase of root hair formation (RHF) that was prevented by the specific NO scavenger carboxy-PTIO (cPTIO). In Arabidopsis, two mutants have been shown to be defective in NO production and to display altered phenotypes in which NO is implicated. Arabidopsis nos1 has a mutation in an NO synthase structural gene (NOS1), and the nia1 nia2 double mutant is null for nitrate reductase (NR) activity. We observed that both mutants were affected in their capacity of developing root hairs. Root hair elongation was significantly reduced in nos1 and nia1 nia2 mutants as well as in cPTIO-treated wild type plants. A correlation was found between endogenous NO level in roots detected by the fluorescent probe DAF-FM DA and RHF. In Arabidopsis, as well as in lettuce, cPTIO blocked the NAA-induced root hair elongation. Taken together, these results indicate that: (1) NO is a critical molecule in the process leading to RHF and (2) NO is involved in the auxin-signaling cascade leading to RHF.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据