3.8 Review

Canavan disease: A white matter disorder

出版社

WILEY-LISS
DOI: 10.1002/mrdd.20108

关键词

oligodendrocyte; NAA; hypomyelination; demyelination

向作者/读者索取更多资源

Breakdown of oligodendrocyte-neuron interactions in white matter (WM), such as the loss of myelin, results in axonal dysfunction and hence a disruption of information processing between brain regions. The major feature of leukodystrophies is the lack of proper myelin formation during early development or the onset of myelin loss late in life. These early childhood WM diseases are described as hypomyelination or dysmyelination arising from a primary block in normal myelin synthesis because of a genetic mutation expressed in oligodendrocytes, or failure in myelination secondary to neuronal or astroglial dysfunctions (van der Knaap [2001] Dev. Med. Child Neurol. 43:705-712). Here, we describe the pathophysiological parameters of Canavan disease (CD), caused by genetic mutations of the aspartoacylase (ASPA) gene, a metabolic enzyme restricted in the central nervous system (CNS) to oligodendrocytes. CD presents pathophysiological dysfunctions similar to diseases caused by myelin gene mutations, such as Pelizaeus-Merzbacher disease (PMD) and several animal models, such as myelin deficient rat (md), jimpy (jp), shiverer (sh), and quaking (qk viable) mutant mice. These single gene mutations have pleiotropic effects, whereby the alteration of one myelin gene expression disrupts functional expression of other oligodendrocyte genes with an outcome of hypomyelination/dysmyelination. Among all of the known leukodystrophies, CD is the first disorder, which was approved and tested for the adeno-associated virus vector (AAV)-ASPA gene therapy (Leone et al. [2000] Ann. Neurol. 48:27-38; Janson et al. [2001] Trends Neurosci. 24:706-712) without much success following the first two attempts. ASPA gene delivery attempts in animal models have shown a lowering of N-acetyl L-aspartate and a change in motor functions, while sponginess of the WM, a characteristic of CD remained unchanged (Matalon et al. [2003] Mol. Ther. 7 (5, Part 1): 580-587; McPhee et al. [2005] Brain Res. Mol. Brain Res. 135:112-121) even with better viral serotype and delivery of the gene during early phase of development (Klugmann et al. [20051 Mol. Ther. 11:745-753). While different approaches are being sought for the success of gene therapy, there are pivotal developmental questions to address regarding the specific regions of the CNS and cell lineages that become the target for the onset and progression of CD symptoms from early to late stages of development. (C) 2006 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据