4.5 Article

Wound-Induced Metabolism in Potato (Solanum tuberosum) Tubers

期刊

PLANT SIGNALING & BEHAVIOR
卷 1, 期 2, 页码 59-66

出版社

TAYLOR & FRANCIS INC
DOI: 10.4161/psb.1.2.2433

关键词

suberin; potato; Solanum tuberosum; carbon flux; analysis; abiotic stress

资金

  1. Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (NSERC)

向作者/读者索取更多资源

Suberin, a cell specific, wall-associated biopolymer, is formed during normal plant growth and development as well as in response to stress conditions such as wounding. It is characterized by the deposition of both a poly(phenolic) domain (SPPD) in the cell wall and a poly(aliphatic) domain (SPAD) thought to be deposited between the cell wall and plasma membrane. Although the monomeric components that comprise the SPPD and SPAD are well known, the biosynthesis and deposition of suberin is poorly understood. Using wound healing potato tubers as a model system, we have tracked the flux of carbon into the aliphatic monomers of the SPAD in a time course fashion. From these analyses, we demonstrate that newly formed fatty acids undergo one of two main metabolic fates during wound-induced suberization: (1) desaturation followed by oxidation to form the 18: 1 omega-hydroxy and dioic acids characteristic of potato suberin, and (2) elongation to very long chain fatty acids (C20 to C28), associated with reduction to 1-alkanols, decarboxylation to n-alkanes and minor amounts of hydroxylation. The partitioning of carbon between these two metabolic fates illustrates metabolic regulation during wound healing, and provides insight into the organization of fatty acid metabolism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据