4.6 Article

Metal nanoparticle array waveguides: Proposed structures for subwavelength devices

期刊

PHYSICAL REVIEW B
卷 74, 期 12, 页码 -

出版社

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevB.74.125111

关键词

-

向作者/读者索取更多资源

Taking advantage of the coherent coupling among metal nanoparticles in a one dimensional array, and using partial illumination of the array, we propose a waveguide device which can excite particles in the dark with high efficiency. These array structures enable the propagation of plasmonic excitation for hundreds of microns. The results are based on coupled dipole approximation calculations, and there are important constraints on particle size, spacing and array size to produce these effects. The simulation shows that the incident wave vector can be rotated 90 degrees using a chain structure in which the illuminated particles are spaced by slightly larger than the wavelength and the not-illuminated particles are spaced by approximately half the wavelength. We show that the near-fields around the not-illuminated particles can be ten times higher than around the illuminated particles for appropriately chosen array structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据