4.8 Article

Taxol Resistance in Breast Cancer Cells Is Mediated by the Hippo Pathway Component TAZ and Its Downstream Transcriptional Targets Cyr61 and CTGF

期刊

CANCER RESEARCH
卷 71, 期 7, 页码 2728-2738

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-10-2711

关键词

-

类别

资金

  1. Canadian Breast Cancer Foundation
  2. CIHR
  3. Ontario Ministry of Research and Innovation, Canada
  4. CIHR/Terry Fox Foundation
  5. Ontario Graduate Scholarship

向作者/读者索取更多资源

Taxol (paclitaxel) resistance represents a major challenge in breast cancer treatment. The TAZ (transcriptional co-activator with PDZ-binding motif) oncogene is a major component of the novel Hippo-LATS signaling pathway and a transcriptional coactivator that interacts with and activates multiple transcription factors to regulate various biological processes. Here, we report that elevated levels of TAZ found in human breast cancer cells are responsible for their resistance to Taxol. DNA microarray analysis identified the oncogenes Cyr61 and CTGF as downstream transcriptional targets of TAZ. Short hairpin RNA-mediated knockdown of both Cyr61 and CTGF reversed TAZ-induced Taxol resistance in breast cancer cells. Interaction of TAZ with the TEAD family of transcription factors was essential for TAZ to activate the Cyr61/CTGF promoters and to induce Taxol resistance. Our findings define the TAZ-TEAD-Cyr61/CTGF signaling pathway as an important modifier of the Taxol response in breast cancer cells, as well as highlighting it as a novel therapeutic target to treat drug-resistant breast cancers that arise commonly at advanced stages of disease. Cancer Res; 71(7); 2728-38. (C) 2011 AACR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据