4.6 Article

Stability of the quantum spin Hall effect: Effects of interactions, disorder, and Z(2) topology

期刊

PHYSICAL REVIEW B
卷 73, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.73.045322

关键词

-

向作者/读者索取更多资源

The stability to interactions and disorder of the quantum spin Hall effect (QSHE) proposed for time-reversal-invariant two-dimensional systems is discussed. The QSHE requires an energy gap in the bulk and gapless edge modes that conduct spin-up and spin-down excitations in opposite directions. When the number of Kramers pairs of edge modes is odd, certain one-particle scattering processes are forbidden due to a topological Z(2) index. We show that in a many-body description, there are other scattering processes that can localize the edge modes and destroy the QSHE: the region of stability for both classes of models (even or odd number of Kramers pairs) is obtained explicitly in the chiral boson theory. For a single Kramers pair, the QSHE is stable to weak interactions and disorder, while for two Kramers pairs it is not; however, the two-pair case can be stabilized by either finite attractive or repulsive interactions. For the simplest case of a single pair of edge modes, it is shown that changing the screening length in an edge with screened Coulomb interactions can be used to drive a phase transition between the QSHE state and the ordinary insulator.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据