4.5 Article

Impact of porous electrode properties on the electrochemical transfer coefficient

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 110, 期 21, 页码 10401-10410

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp060372f

关键词

-

向作者/读者索取更多资源

The rate of an activation-controlled electrochemical reaction is determined by two key parameters, the exchange current density, i(o), and the transfer coefficient, alpha, which is inversely related to the Tafel slope. Assuming that the symmetry factor, beta, is 0.5, the minimum alpha value should be 0.5 for all standard reaction mechanisms, with alpha values larger than this indicating a better electrocatalytic mechanism. The primary goal of this paper is to better understand why alpha values of <0.5 are often observed experimentally, with specific examples given for the oxygen reduction reaction. These low alpha values cannot be explained by adsorption behavior, but they can result when reactions occur within a porous electrode structure. Consistent with past literature related to Tafel slope predictions, we show that long and narrow pores, a low ionic or electronic conductivity of the electrode layer, and a high i(o) value can cause alpha to be < 0.5, most typically 0.25. However, alpha values between 0.25 and 0.5 are also encountered in practice. We show here that such alpha values can be obtained for reactions occurring at porous films that have nonuniform properties. We also show that the overpotential range over which alpha changes from 0.5 to 0.25 can be quite broad, especially at high temperatures, and thus can be misinterpreted as a true Tafel region with a transfer coefficient between 0.25 and 0.5.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据