4.7 Article

Designed interaction potentials via inverse methods for self-assembly

期刊

PHYSICAL REVIEW E
卷 73, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.73.011406

关键词

-

向作者/读者索取更多资源

We formulate statistical-mechanical inverse methods in order to determine optimized interparticle interactions that spontaneously produce target many-particle configurations. Motivated by advances that give experimentalists greater and greater control over colloidal interaction potentials, we propose and discuss two computational algorithms that search for optimal potentials for self-assembly of a given target configuration. The first optimizes the potential near the ground state and the second near the melting point. We begin by applying these techniques to assembling open structures in two dimensions (square and honeycomb lattices) using only circularly symmetric pair interaction potentials; we demonstrate that the algorithms do indeed cause self-assembly of the target lattice. Our approach is distinguished from previous work in that we consider (i) lattice sums, (ii) mechanical stability (phonon spectra), and (iii) annealed Monte Carlo simulations. We also devise circularly symmetric potentials that yield chainlike structures as well as systems of clusters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据