4.7 Article

Hydrodynamic Lyapunov modes in coupled map lattices

期刊

PHYSICAL REVIEW E
卷 73, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.73.016202

关键词

-

向作者/读者索取更多资源

In this paper, numerical and analytical results are presented which indicate that hydrodynamic Lyapunov modes (HLMs) also exist for coupled map lattices (CMLs). The dispersion relations for the HLMs of CMLs are found to fall into two different universality classes. It is characterized by lambda similar to k for coupled standard maps and lambda similar to k(2) for coupled circle maps. The conditions under which HLMs can be observed are discussed. The role of the Hamiltonian structure, conservation laws, translational invariance, and damping is elaborated. Our results are as follows: (1) The Hamiltonian structure is not a necessary condition for the existence of HLMs. (2) Conservation laws or the translational invariance alone cannot guarantee the existence of HLMs. (3) Including a damping term in the system of coupled Hamiltonian maps does not destroy the HLMs. The lambda-k dispersion relation of HLMs, however, changes to the universality class with lambda similar to k(2) under damping. In contrast, no HLMs survives in the system of coupled circle maps under damping. (4) An on-site potential destroys the HLMs. (5) The study of zero-value Lyapunov exponents (LEs) and associated Lyapunov vectors (LVs) shows that translational invariance and conservation laws play different roles in the tangent space dynamics. (6) The dynamics of the coordinate and momentum parts of LVs in Hamiltonian systems are related but different. Furthermore, numerical results for a two-dimensional system show that the appearance of HLMs in CMLs is not restricted to the one-dimensional case.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据