4.7 Article

High internal phase CO2-in-water emulsions stabilized with a branched nonionic hydrocarbon surfactant

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 298, 期 1, 页码 406-418

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2005.11.057

关键词

concentrated emulsion; carbon dioxide; interfacial tension; high pressure

向作者/读者索取更多资源

A nonionic-methylated branched hydrocarbon surfactant, octa(ethylene glycol) 2,6,8-trimethyl-4-nonyl ether (5b-C12E8) emulsifies up to 90% CO2 in water with polyhedral cells smaller than 10 mu m, as characterized by optical rnicroscopy. The stability of these concentrated CO2/water (C/W) emulsions increases with pressure and in some cases exceeds 24 h. An increase in pressure weakens the attractive van der Waals interactions between the CO2 cells across water and raises the disjoining pressure. It also enhances the solution of the surfactant tail and drives the surfactant front water towards the water-CO2 interface, as characterized by the change in emulsion phase behavior and the decrease in interfacial tension (gamma) to 2.1 mN/m. As the surfactant adsorption increases, the greater tendency for ion adsorption is likely to increase the electrostatic repulsion in the thin lamellae and raise the disjoining pressure. As pressure increases, the increase in disjoining pressure and decrease in the capillary pressure (due to the decrease in gamma) each favor greater stability of the lamellae against rupture. The electrical conductivity is predicted successfully as a function of Bruggeman's model for concentrated emulsions. Significant differences in the stability are observed for concentrated C/W emulsions at elevated pressure versus air/W or C/W foams at atmospheric pressure. (c) 2005 Published by Elsevier Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据