4.6 Article

The Thermotoga maritima phenotype is impacted by syntrophic interaction with Methanococcus jannaschii in hyperthermophilic coculture

期刊

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
卷 72, 期 1, 页码 811-818

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.72.1.811-818.2006

关键词

-

向作者/读者索取更多资源

Significant growth phase-dependent differences were noted in the transcriptome of the hyperthermophilic bacterium Thermotoga maritima when it was cocultured with the hyperthermophilic archaeon Methanococcus jannaschii. For the mid-log-to-early-stationary-phase transition of a T. maritima monoculture, 24 genes (1.3% of the genome) were differentially expressed twofold or more. In contrast, methanogenic coculture gave rise to 292 genes differentially expressed in T. maritima at this level (15.5% of the genome) for the same growth phase transition. Interspecies H, transfer resulted in three- to five-fold-higher T. maritima cell densities than in the monoculture, with concomitant formation of exopolysaccharide (EPS)-based cell aggregates. Differential expression of specific sigma factors and genes related to the ppGpp-dependent stringent response suggests involvement in the transition into stationary phase and aggregate formation. Cell aggregation was growth phase dependent, such that it was most prominent during mid-log phase and decayed as cells entered stationary phase. The reduction in cell aggregation was coincidental with down-regulation of genes encoding EPS-forming glycosyltranferases and up-regulation of genes encoding beta-specific glycosyl hydrolases; the latter were presumably involved in hydrolysis of beta-linked EPS to release cells from aggregates. Detachment of aggregates may facilitate colonization of new locations in natural environments where T. maritima coexists with other organisms. Taken together, these results demonstrate that syntrophic interactions can impact the transcriptome of heterotrophs in methanogenic coculture, and this factor should be considered in examining the microbial ecology in anaerobic environments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据