4.4 Article

Rescue of vasopressin V2 receptor mutants by chemical chaperones: Specificity and mechanism

期刊

MOLECULAR BIOLOGY OF THE CELL
卷 17, 期 1, 页码 379-386

出版社

AMER SOC CELL BIOLOGY
DOI: 10.1091/mbc.E05-06-0579

关键词

-

向作者/读者索取更多资源

Because missense mutations in genetic diseases of membrane proteins often result in endoplasmic reticulum (ER) retention of functional proteins, drug-induced rescue of their cell surface expression and understanding the underlying mechanism are of clinical value. To study this, we tested chemical chaperones and sarco(endo)plasmic reticulum Ca2+ ATPase pump inhibitors on Madin-Darby canine kidney cells expressing nine ER-retained vasopressin type-2 receptor (V2R) mutants involved in nephrogenic diabetes insipidus. Of these nine, only V2R-V206D showed improved maturation and plasma membrane rescue with glycerol, dimethyl sulfoxide (DMSO), thapsigargin/curcumin, and ionomycin but not with other osmolytes or growth at 27 degrees C. This revealed that rescue is mutant specific and that this mutant is prone to rescue by multiple compounds. Rescue did not involve changed expression of molecular chaperones calnexin, heat-shock protein (HSP) 70, or HSP90. V2R antagonist SR121463B treatment revealed that V2R-V206D and V2R-S167T were rescued and matured to a greater extent, suggesting that the rescuing activity of a pharmacological versus chemical chaperone is broader and stronger. Calcium measurements showed that rescue of V2R-V206D by thapsigargin, curcumin, and ionomycin was because of increased cytosolic calcium level, rather than decreased endoplasmic reticulum calcium level. The molecular mechanism underlying rescue by DMSO, glycerol, and SR121463B is different, because with these compounds intracellular calcium levels were unaffected.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据