4.5 Article

Erythropoietin protects against 6-hydroxydopamine-induced dopaminergic cell death

期刊

JOURNAL OF NEUROCHEMISTRY
卷 96, 期 2, 页码 428-443

出版社

WILEY
DOI: 10.1111/j.1471-4159.2005.03587.x

关键词

neuroprotection; Parkinson's disease; serinethreonine kinase ( Akt); substantia nigra pars compacta

资金

  1. NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKE [R01NS045048, R01NS044178, R01NS043802, R01NS044076] Funding Source: NIH RePORTER
  2. NINDS NIH HHS [NS45048, NS44178, NS44076, NS43802] Funding Source: Medline

向作者/读者索取更多资源

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the death of midbrain dopaminergic neurons. In the present study, erythropoietin, a trophic factor that has both hematopoietic and neural protective characteristics, was investigated for its capacity to protect dopaminergic neurons in experimental Parkinson's disease. Using both the dopaminergic cell line, MN9D, and primary dopamine neurons, we show that erythropoietin (1-3 U/mL) is neuroprotective against the dopaminergic neurotoxin, 6-hydroxydopamine. Protection was mediated by the erythropoietin receptor, as neutralizing anti-erythropoietin receptor antibody abrogated the protection. Activation of Akt/protein kinase B (PKB), via the phosphoinositide 3-kinase pathway, is a critical mechanism in erythropoietin-induced protection, while activation of extracellular signal-regulated kinase (ERK)1/2 contributes only moderately. Indeed, transfection of constitutively active Akt/PKB into dopaminergic cells was sufficient to protect against cell death. Furthermore, erythropoietin diminished markers of apoptosis in MN9D cells, including caspase 9 and caspase 3 activation and internucleosomal DNA fragmentation, suggesting that erythropoietin interferes with the apoptosis-execution process. When erythropoietin was administered to mice unilaterally lesioned with 6-hydroxydopamine, it prevented the loss of nigral dopaminergic neurons and maintained striatal catecholamine levels for at least 8 weeks. Erythropoietin-treated mice also had significantly reduced behavioral asymmetries. These studies suggest that erythropoietin can be an effective neuroprotective agent for dopaminergic neurons, and may be useful in reversing behavioral deficits associated with Parkinson's disease.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据