4.5 Article

Vascular endothelial growth factor mediates atorvastatin-induced mammalian achaete-scute homologue-1 gene expression and neuronal differentiation after stroke in retired breeder rats

期刊

NEUROSCIENCE
卷 141, 期 2, 页码 737-744

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2006.04.042

关键词

neuronal differentiation; Mash1; atorvastatin; VEGF; neurosphere; stroke

资金

  1. NINDS NIH HHS [P01 NS23393, P01 NS023393, R01 NS047682-03, R01 NS047682] Funding Source: Medline
  2. NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKE [R01NS047682, P01NS023393] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Neurogenesis declines with advancing age. The mammalian achaete-scute homologue-1 encodes a basic helix-loop-helix transcription factor, which controls neuronal differentiation. In this study, we first tested whether atorvastatin treatment enhances neurological functional outcome and neuronal differentiation after stroke in retired breeder 12 month rats. Rats were subjected to middle cerebral artery occlusion and treated with or without atorvastatin (3 mg/kg) for 7 days. Atorvastatin significantly increased expression of mammalian achaete-scute homologue-1, beta-tubulin III, and vascular endothelial growth factor in the ischemic brain, and concomitantly improved functional outcome compared with middle cerebral artery occlusion control rats. Increased neurogenesis significantly correlated with functional recovery after stroke. To further investigate the mechanisms of atorvastatin-induced neuronal differentiation, experiments were performed on neurospheres derived from retired breeder rat subventricular zone cells. Atorvastatin increased neuronal differentiation and upregulated vascular endothelial growth factor and mammalian achaete-scute homologue-1 gene expression in cultured neurospheres. Vascular endothelial growth factor-treated neurospheres significantly increased mammalian achaete-scute homologue-1 and P-tubulin III expression. Inhibition of vascular endothelial growth factor decreased atorvastatin-induced mammalian achaete-scute homologue-1 and beta-tubulin III expression. These data indicate that atorvastatin increases neuronal differentiation in retired breeder rats. In addition, atorvastatin upregulation of vascular enclothelial growth factor expression, influences mammalian achaete-scute homologue-1 transcription factor, which in turn, facilitates an increase in subventricular zone neuronal differentiation. These atorvastatin-mediated molecular events may contribute to the improved functional outcome in retired breeder rats subjected to stroke. (c) 2006 IBRO. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据