4.5 Article

In vivo gene transfer by electroporation allows expression of a fluorescent transgene in hamster testis and epididymal sperm and has no adverse effects upon testicular integrity or sperm quality

期刊

BIOLOGY OF REPRODUCTION
卷 74, 期 1, 页码 95-101

出版社

OXFORD UNIV PRESS INC
DOI: 10.1095/biolreprod.105.042267

关键词

electroporation; epididymis; gamete biology; in vivo gene transfer; sperm; spermatogenesis; testis

资金

  1. Medical Research Council [G0500672] Funding Source: Medline
  2. MRC [G0500672] Funding Source: UKRI

向作者/读者索取更多资源

The study of gene function in testis and sperm has been greatly assisted by transgenic mouse models. Recently, an alternative way of expressing transgenes in mouse testis has been developed that uses electroporation to introduce transgenes into the male germ cells. This approach has been successfully used to transiently express reporter genes driven by constitutive and testis-specific promoters. It has been proposed as an alternative method for studying gene function in testis and sperm, and as a novel way to create transgenic animals. However, the low levels and transient nature of transgene expression that can be achieved using this technique have raised concerns about its practical usefulness. It has also not been demonstrated in mammals other than mice. in this study, we show for the first time that in vivo gene transfer using electroporation can be used to express a fluorescent transgene in the testis of a mammal other than mice, the Syrian golden hamster. Significantly, for the first time we demonstrate expression of a transgene in epididymal sperm using this approach. We show that expression of the transgene can be detected in sperm for as long as 60 days following gene transfer. Finally, we provide the first systematic demonstration that this technique does not lead to any significant long-term adverse effects on testicular integrity and sperm quality. This technique therefore offers a novel way to study gene function during fertilization in hamsters and may also have potential as a way of creating transgenic versions of this important model species.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据