4.7 Article

Photosynthesis and substrate supply for isoprene biosynthesis in poplar leaves

期刊

ATMOSPHERIC ENVIRONMENT
卷 40, 期 -, 页码 S138-S151

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.atmosenv.2005.09.091

关键词

isoprene emission; dimethylallyl diphosphate; photosynthetic intermediates; photosynthesis; Populus x canescens

向作者/读者索取更多资源

Gray poplar leaves emit high amounts of isoprene. In this context, we investigated the degree to which photosynthesis delivers necessary precursors for chloroplast isoprene biosynthesis, and whether this energy-consuming pathway could be involved in protecting the photosynthetic electron transport system. Such protection could result from consumption of a surplus in ATP and NADPH, generated under constricted net assimilation caused by high leaf temperatures and high light intensities. During the course of the day triose phosphate (TP) and dimethylallyl diphosphate (DMADP) concentrations showed pronounced diurnal variations closely related to net assimilation and isoprene emission rates, while other variables, e.g. energy (ATP/ADP) and redox (NADPH/NADP) ratio, as well as phosphoenolpyruvate (PEP) and pyruvate strongly scattered related to changing temperature and light intensities. Intra-day positive correlations were found mainly between leaf concentrations of TP and DMADP, and sucrose, ATP/ ADP ratio and net assimilation rates. Under non-saturating light (200-400 mu mol photons m(-2) s(-1)), leaf DMADP pools were positively correlated mainly with PEP, starch, and fructose 2,6-bisphosphate (F26BP). Under saturating light, correlations improved and additionally involved sucrose, TP, and the ratio of NADPH/NADP. Study of temperature response curves showed that net assimilation and isoprene emission were negatively correlated to each other. This disconnection was mostly visible by the transient change of DMADP contents with maximum levels at 25 degrees C. At higher temperatures, declining pools of DMADP, TP and pyruvate indicated that DMADP consumption overcompensated DMADP production resulting in highest isoprene emission rates at declining pool sizes of precursors. In parallel to the reduction of net assimilation increases of NADPH/NADP and ATP/ADP ratios also portended that the MEP pathway dissipates a surplus of ATP and NADPH which cannot be used for carbon reduction under limited CO2 supply. Taken together we thus assume that DMADP/isoprene biosynthesis constitutes a way to avoid damage to the photosynthetic electron transport chain when CO2 reduction limits photosynthetic electron transport. (c) 2006 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据