4.6 Article

A nonisothermal, two-phase model for polymer electrolyte fuel cells

期刊

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
卷 153, 期 6, 页码 A1193-A1200

出版社

ELECTROCHEMICAL SOC INC
DOI: 10.1149/1.2193403

关键词

-

向作者/读者索取更多资源

A model fully coupling the two-phase flow, species transport, heat transfer, and electrochemical processes is developed to investigate liquid water distribution and flooding in polymer electrolyte fuel cells (PEFCs) under nonisothermal conditions. The thermal model accounts for irreversible heat and entropic heat generated due to electrochemical reactions, Joule heating arising from protonic/electronic resistance, and latent heat of water condensation and/or evaporation. A theoretical analysis is presented to show that in the two-phase zone, water transport via vapor-phase diffusion under the temperature gradient is not negligible, with a magnitude comparable to the water production rate in PEFCs. Detailed numerical results further reveal that the vapor-phase diffusion enhances water removal from the gas diffusion layer (GDL) under the channel and exacerbates GDL flooding under the land. Simultaneously, this vapor-phase diffusion provides a new mechanism for heat removal through a phase change process in which water evaporates at the hotter catalyst layer, diffuses through the interstitial spaces of the GDL, and condenses on the cooler land surface. This new heat removal mechanism resembles the heat pipe effect. Three-dimensional simulations for a full PEFC using this nonisothermal, two-phase model are presented for the first time. Separate velocity fields of gas and liquid phases are given, clearly illustrating that the vapor-phase diffusion and capillary-driven liquid water transport in a GDL aid each other in water removal along the through-plane direction under the channel area, but oppose each other along the in-plane direction between the channel area and land. (C) 2006 The Electrochemical Society.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据