4.5 Article

Conformational changes in single-strand DNA as a function of temperature by SANS

期刊

BIOPHYSICAL JOURNAL
卷 90, 期 2, 页码 544-551

出版社

CELL PRESS
DOI: 10.1529/biophysj.105.071290

关键词

-

向作者/读者索取更多资源

Small-angle neutron scattering ( SANS) measurements were performed on a solution of single-strand DNA, 5'-ATGCTGATGC-3', in sodium phosphate buffer solution at 10 degrees C temperature increments from 25 degrees C to 80 degrees C. Cylindrical, helical, and random coil shape models were fitted to the SANS measurements at each temperature. All the shapes exhibited an expansion in the diameter direction causing a slightly shortened pitch from 25 degrees C to 43 degrees C, an expansion in the pitch direction with a slight decrease in the diameter from 43 degrees C to 53 degrees C, and finally a dramatic increase in the pitch and diameter from 53 degrees C to 80 degrees C. Differential scanning calorimeter scans of the sequence in solution exhibited a reversible two-state transition pro. le with a transition temperature of 47.5 +/- 0.5 degrees C, the midpoint of the conformational changes observed in the SANS measurements, and a calorimetric transition enthalpy of 60 +/- 3 kJ mol(-1) that indicates a broad transition as is observed in the SANS measurements. A transition temperature of 47 +/- 1 degrees C was also obtained from ultraviolet optical density measurements of strand melting scans of the single-strand DNA. This transition corresponds to unstacking of the bases of the sequence and is responsible for the thermodynamic discrepancy between its binding stability to its complementary sequence determined directly at ambient temperatures and determined from extrapolated values of the melting of the duplex at high temperature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据