4.5 Article

Tissue transglutaminase serves as an inhibitor of aoptosis by cross-linking caspase 3 in thapsigargin-treated cells

期刊

MOLECULAR AND CELLULAR BIOLOGY
卷 26, 期 2, 页码 569-579

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.26.2.569-579.2006

关键词

-

资金

  1. NCI NIH HHS [CA82197, R01 CA082197] Funding Source: Medline
  2. NATIONAL CANCER INSTITUTE [R01CA082197] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Thapsigargin (THG) is an inhibitor of the endoplasmic reticulum Ca2+-ATPase that induces caspase 3 activation and apoptosis in HCT116 cells through a Bax-dependent pathway. In Bax-deficient HCT116 cells, however, THG specifically generates two additional species of caspase 3, termed p40 and p64, with molecular masses of approximately 40 and 64 kDa, respectively, through unknown mechanisms. Here, we report that the Ca2+-dependent protein cross-linking enzyme tissue transglutaminase (tTGase) is involved in THG-induced p40 and p64 formation by catalyzing caspase 3 cross-linking reactions, thereby inactivating caspase 3 and apoptosis in Bax-deficient cells. Overexpression of tTGase increases p40 and p64 in THG-treated cells, and purified tTGase catalyzes procaspase 3 cross-linking in vitro. Inhibition of tTGase activity by either the tTGase inhibitor monodansyleadaverine or short-hairpin RNA reduces the cross-linked species p40 and p64 and restores caspase 3 activation in response to THG treatment. Moreover, prolonged exposure to THG results in a decrease in protein levels of XIAP and cIAP-1, which is subsequently followed by an increase in tTGase protein expression and activity. Expression of cytosolic Smac sensitizes Bax-deficient cells to THG-induced apoptosis; however, this effect is diminished by coexpression of tTGase. Taken together, these results suggest a novel role for tTGase as a new type of caspase 3 inhibitor in THG-mediated apoptosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据