4.5 Article

The effects of presynaptic calcium channel modulation by roscovitine on transmitter release at the adult frog neuromuscular junction

期刊

EUROPEAN JOURNAL OF NEUROSCIENCE
卷 23, 期 12, 页码 3200-3208

出版社

WILEY
DOI: 10.1111/j.1460-9568.2006.04849.x

关键词

calcium; motoneuron; paired-pulse facilitation Rana pipiens; Xenopus laevis

向作者/读者索取更多资源

Calcium (Ca2+) influx through presynaptic calcium channels triggers transmitter release, and any alterations in the gating of these calcium channels results in changes in the magnitude of transmitter released. We used (R)-roscovitine, a cyclin-dependent kinase inhibitor that also appears to act directly on calcium channels, as a tool to modulate presynaptic calcium influx and study effects on transmitter release. We show that this compound increased the quantal content of acetylcholine released from the Rana frog motor nerve terminal (by 149%) without changing paired-pulse facilitation (under low calcium conditions). In contrast, exposure to 3,4-diaminopyridine (DAP; which similarly affects transmitter release by partially blocking potassium channels, altering the shape of the presynaptic action potential, and indirectly increasing calcium entry) increased paired-pulse facilitation (by 23%). In addition, we show that (R)-roscovitine predominately slowed deactivation kinetics of calcium current (by 427%) recorded from Xenopus frog motoneurons, and as a result, increased the integral of calcium channel current evoked by a physiological action potential waveform (by 44%). Because we did not observe any significant effects of structurally related cyclin-dependent kinase inhibitors [(S)-roscovitine or olomoucine] on evoked transmitter release or calcium current kinetics, it appears that these effects of (R)-roscovitine are independent of cyclin-dependent kinases (cdks). In summary, we hypothesize that (R)-roscovitine effects on transmitter release at the adult frog neuromuscular junction (NMJ) are mediated by its effects on calcium channel gating, and these effects increase our understanding of calcium triggered secretion at this synapse.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据