4.5 Article

Caspase-like activity is essential for long-term synaptic plasticity in the terrestrial snail Helix

期刊

EUROPEAN JOURNAL OF NEUROSCIENCE
卷 23, 期 1, 页码 129-140

出版社

WILEY
DOI: 10.1111/j.1460-9568.2005.04549.x

关键词

caspase; long-term synaptic plasticity; snail

向作者/读者索取更多资源

Although caspase activity in the nervous system of mollusks has not been described before, we suggested that these cysteine proteases might be involved in the phenomena of neuroplasticity in mollusks. We directly measured caspase-3 (DEVDase) activity in the Helix lucorum central nervous system (CNS) using a fluorometrical approach and showed that the caspase-3-like immunoreactivity is present in the central neurons of Helix. Western blots revealed the presence of caspase-3-immunoreactive proteins with a molecular mass of 29 kDa. Staurosporin application, routinely used to induce apoptosis in mammalian neurons through the activating cleavage of caspase-3, did not result in the appearance of a smaller subunit corresponding to the active caspase in the snail. However, it did increase the enzyme activity in the snail CNS. This suggests differences in the regulation of caspase-3 activity in mammals and snails. In the snail CNS, the caspase homolog seems to possess an active center without activating cleavage typical for mammals. In electrophysiological experiments with identified snail neurons, selective blockade of the caspase-3 with the irreversible and cell-permeable inhibitor of caspase-3 N-benzyloxycarbonyl-Asp(OMe)-Glu(OMe)-Val-Asp-(OMe)-fluoro-methylketone prevented development of the long-term stage of synaptic input sensitization, suggesting that caspase is necessary for normal synaptic plasticity in snails. The results of our study give the first direct evidence that the caspase-3-like activity is essential for long-term plasticity in the invertebrate neurons. This activity is presumably involved in removing inhibitory constraints on the storage of long-term memory.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据