4.6 Article

Air pollutant absorption by single moving droplets with drag force at moderate Reynolds numbers

期刊

CHEMICAL ENGINEERING SCIENCE
卷 61, 期 2, 页码 449-458

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ces.2005.07.016

关键词

mass transfer; absorption; droplet transport number; hydrogen chloride; drag force; wet scrubber

向作者/读者索取更多资源

Mass transfer phenomena of hydrogen chloride around single water droplets at moderate initial Reynolds numbers are investigated to simulate air pollutant absorption by droplets in wet scrubbers. Of particular interest is the uptake mechanism in the droplet under the impact of deceleration. An examination of the mass transfer inside the droplet, in view of the solute transport delay from the gas-liquid interface to the droplet interior, a maximum distribution in concentration difference between the droplet surface and the internal minimum concentration is exhibited. Meanwhile, gaseous scavenging behavior is apparently characterized by the droplet. Regarding the effect of the decelerating motion, the predictions reveal that the variation of the droplet velocity due to drag force is faster than that of the uptake process. Therefore, the absorption rates of the decelerating droplet are substantially decreased when compared with that of a droplet without drag force. As a whole, increasing initial Reynolds number causes faster decay in the droplet velocity which further reduces the mass transfer rate in the aqueous phase. This suggests that the larger the initial Reynolds number, the more significant the absorption rate of the droplet affected by the drag force. (c) 2005 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据