4.6 Article

Charge transfers at metal/oxide interfaces: a DFT study of formation of K delta+ and Au delta- species on MgO/Ag(100) ultra-thin films from deposition of neutral atoms

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 8, 期 28, 页码 3335-3341

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b604288k

关键词

-

向作者/读者索取更多资源

Ultra-thin oxide films grown on a metal substrate and of thickness smaller than 1 nm may exhibit unusual properties with respect to thicker films or single crystal oxide surfaces. In a previous study [G. Pacchioni, L. Giordano and M. Baistrocchi, Phys. Rev. Lett., 2005, 94, 226104] we have suggested that a Au atom adsorbed on a MgO/Mo(100) thin film becomes negatively charged by direct electron tunneling from the Mo metal and that this is related to the low MgO/Mo(100) work function. Here we show, based on periodic DFT supercell calculations, that charge transfer can occur also in the opposite direction by adsorption of electropositive K atoms on MgO/Ag(100) films. We predict the occurrence of a charge transfer also for Au on MgO/Ag(100)films despite the fact that here the work function is 1 eV larger than in MgO/Mo(100). The formation of a layer of adsorbed negative (Au delta-/MgO/Ag) or positive ((delta+)(K)/MgO/Ag) adsorbates results in an increase or decrease, respectively, of the MgO/Ag(100) work function as predicted by the classical Gurney model for ionic adsorbates on metal surfaces.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据