4.6 Article

A theoretical and experimental study of lead substitution in calcium hydroxyapatite

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 8, 期 8, 页码 967-976

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b509254j

关键词

-

向作者/读者索取更多资源

Characterization of lead substitution for calcium in hydroxyapatite (CaHA) is carried out, using experimental techniques and Density Functional theoretical (DFT) analyses. Theoretical modeling is used to obtain information of the Pb chemical environment for occupancy at either Ca(I) or Ca(II) sites of CaHA. Effects of the larger ionic radius of Pb 12 compared to Ca 12 are apparent in embedded cluster calculations of local chemical bonding properties. DFT periodic planewave pseudopotential studies are used to provide first-principles predictions of local structural relaxation and site preference for Pb(x)Ca(10-x)HA over the composition range x <= 6. General characteristics of the polycrystalline material are verified by X-ray diffraction and FTIR analysis, showing the presence of a single phase of CaHA structure. A short range structure around lead is proposed in order to interpret the Pb L-edge EXAFS spectrum of the solid solution Ca(6.6)Pb(3.4)HA. In this concentration we observe that lead mainly occupies Ca( II) sites; the EXAFS fit slightly favors Pb clustering, while theory indicates the importance of Pb-Pb avoidance on site (II).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据