4.2 Article

Zooplankton response to storm runoff in a tropical estuary: bottom-up and top-down controls

期刊

MARINE ECOLOGY PROGRESS SERIES
卷 318, 期 -, 页码 187-201

出版社

INTER-RESEARCH
DOI: 10.3354/meps318187

关键词

zooplankton; phytoplankton; succession; response times; nutrients; runoff; bottom-up; top-down

向作者/读者索取更多资源

Zooplankton successional patterns and response times were characterized in a tropical estuary following a major storm-runoff event to evaluate the effects of a nutrient perturbation on community composition and dynamics. Intensive water-column monitoring in southern Kaneohe Bay, Hawaii, showed that dissolved macronutrients - NO3- + NO2-, SRP (soluble reactive phosphorus) and Si(OH)(4) - increased significantly immediately following the initial runoff event. Bottom-up effects were evident in both phytoplankton and zooplankton communities. An initial phytoplankton bloom was dominated by small cells and lasted only a few days, while post-bloom pigment concentrations showed a more gradual increase in total chlorophyll a and a shift to a diatom-dominated community. The initial bloom had an unexpectedly large influence on zooplankton growth and reproduction on extremely short time scales. Appendicularians exhibited the most dramatic response, with biomass increasing 6-fold in 1 d, and abundances reaching values only rarely observed in these waters. Response covaried with organism size, with larger components of the community, especially calanoid copepods and gelatinous zooplankton, increasing as new resources became available. Post-bloom changes in zooplankton and phytoplankton community structure also suggest significant top-down controls on phytoplankton and zooplankton community biomass and structure, with increased predation on appendicularians and copepods resulting in partial release of grazing pressure on small and large cells, respectively. Nutrient-rich runoff can have significant and surprisingly rapid impacts on zooplankton population dynamics in tropical coastal waters via direct, pulsed, food influences on the growth and reproduction of omnivorous organisms and the indirect stimulation of secondary consumers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据