4.6 Article

A generalized population balance model for the prediction of particle size distribution in suspension polymerization reactors

期刊

CHEMICAL ENGINEERING SCIENCE
卷 61, 期 2, 页码 332-346

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ces.2005.07.013

关键词

population balance model; suspension polymerization; PVC; polystyrene

向作者/读者索取更多资源

In the present study, a comprehensive population balance model is developed to predict the dynamic evolution of the particle size distribution in high hold-up (e.g., 40%) non-reactive liquid-liquid dispersions and reactive liquid(solid)-liquid suspension polymerization systems. Semiempirical and phenomenological expressions are employed to describe the breakage and coalescence rates of dispersed monomer droplets in terms of the type and concentration of suspending agent, quality of agitation, and evolution of the physical, thermodynamic and transport properties of the polymerization system. The fixed pivot (FPT) numerical method is applied for solving the population balance equation. The predictive capabilities of the present model are demonstrated by a direct comparison of model predictions with experimental data on average mean diameter and droplet/particle size distributions for both non-reactive liquid-liquid dispersions and the free-radical suspension polymerization of styrene and VCM monomers. (c) 2005 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据