4.6 Article

Spatial segregation of neuronal calcium signals encodes different forms of LTP in rat hippocampus

期刊

JOURNAL OF PHYSIOLOGY-LONDON
卷 570, 期 1, 页码 97-111

出版社

BLACKWELL PUBLISHING
DOI: 10.1113/jphysiol.2005.098947

关键词

-

向作者/读者索取更多资源

Calcium regulates numerous processes in the brain. How one signal can coordinate so many diverse actions, even within the same neurone, is the subject of intense investigation. Here we have used two-photon calcium imaging to determine the mechanism that enables calcium to selectively and appropriately induce different forms of long-term potentiation (LTP) in rat hippocampus. Short-lasting LTP (LTP 1) required activation of ryanodine receptors (RyRs), which selectively increased calcium in synaptic spines. LTP of intermediate duration (LTP 2) was dependent on activation of inositol 1,4,5-trisphosphate (IP3) receptors (IP(3)Rs) and subsequent calcium release specifically in dendrites. Long-lasting LTP (LTP 3) was selectively dependent on L-type voltage-dependent calcium channels (L-VDCCs), which generated somatic calcium influx. Activation of NMDA receptors was necessary, but not sufficient, for the generation of appropriate calcium signals in spines and dendrites, and the induction of LTP 1 and LTP 2. These results suggest that the selective induction of different forms of UP is achieved via spatial segregation of functionally distinct calcium signals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据