4.6 Article Proceedings Paper

Two-pore-domain potassium channels in smooth muscles: new components of myogenic regulation

期刊

JOURNAL OF PHYSIOLOGY-LONDON
卷 570, 期 1, 页码 37-43

出版社

WILEY
DOI: 10.1113/jphysiol.2005.098897

关键词

-

向作者/读者索取更多资源

Gastrointestinal (GI) smooth muscles are influenced by many levels of regulation, including those provided by enteric motor neurones, hormones and paracrine substances. The integrated contractile responses to these regulatory mechanisms depend heavily on the state of excitability of smooth muscle cells. Resting ionic conductances and myogenic responses to agonists and physical parameters, such as stretch, are important in establishing basal excitability. This review discusses the role of 2-pore-domain K+ channels in contributing to background conductances and in mediating responses of GI muscles to enteric inhibitory nerve stimulation and stretch. Murine GI muscles express TREK-I channels and display a stretch-dependent K+ (SDK) conductance that is also activated by nitric oxide via a cGMP-dependent mechanism. Cloning and expression of mTREK-1 produced an SDK conductance that was activated by cGMP-dependent phosphorylation at serine-351. GI muscle cells also express TASK-1 and TASK-2 channels that are inhibited by lidocaine and external acidification. These conductances appear to provide significant background K+ permeability that contributes to the negative resting potentials of GI muscles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据