4.8 Article

Micropatterns of positive guidance cues anchored to polypyrrole doped with polyglutamic acid: A new platform for characterizing neurite extension in complex environments

期刊

BIOMATERIALS
卷 27, 期 3, 页码 473-484

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2005.06.030

关键词

electrochemistry; laminin; micropatterning; nerve regeneration; polypyrrole

向作者/读者索取更多资源

This paper describes a method for preparing substrates with micropatterns of positive guidance cues for the purpose of stimulating the growth of neurons. This method uses an oxidizing potential, applied to a micropattern of indium tin oxide in the presence of pyrrole and polyglutamic acid, to electrodeposit a matrix consisting of polypyrrole doped with polyglutamic acid. The resulting matrix subsequently can be modified with positive guidance cues via standard amide coupling reactions. Cells adhered to the micropatterned substrates can be stimulated electrically by the underlying electrodeposited matrix while they are in contact with positive guidance cues. This method can be extended to include both positive and negative guidance cues in a variety of combinations. To demonstrate the suitability of this method in the context of nerve guidance, dorsal root ganglia were grown in the presence of a micropatterned substrate whose surface was modified with molecules such as polylysine, laminin, or both. Cell adhesion and neurite extension were found to occur almost exclusively in areas where positive guidance cues were attached. This method is easy to execute and is of general utility for fundamental studies on the behavior of neurons in the presence of complex combinations of guidance cues as well as advanced bioelectronic devices such as neuronal networks. (c) 2005 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据