4.6 Article

Basic features of bovine spermatogonial culture and effects of glial cell line-derived neurotrophic factor

期刊

THERIOGENOLOGY
卷 65, 期 9, 页码 1828-1847

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.theriogenology.2005.10.020

关键词

spermatogonial stem cells; bovine; cell culture; GDNF; spermatogenesis

向作者/读者索取更多资源

Spermatogonial stem cells (SSC) are a small self-renewing subpopulation of type A spermatogonia, which for the rest are composed of differentiating cells with a very similar morphology. We studied the development of primary co-cultures of prepubertal bovine Sertoli cells and A spermatogonia and the effect of glial cell line-derived neurotropic factor (GDNF) on the numbers and types of spermatogonia, the formation of spermatogonial colonies and the capacity of the cultured SSC to colonize a recipient mouse testis. During the first week of culture many, probably differentiating, A spermatogonia entered apoptosis while others formed pairs and chains of A spermatogonia. After 1 week colonies started to appear that increased in size with time. Numbers of single (As) and paired (A(pr)) spermatogonia were significantly higher in GDNF treated cultures at Days 15 and 25 (P < 0.01 and 0.05, respectively), and the ratio of A(s) to A(pr) and spermatogonial chains (A(al)) was also higher indicating enhanced self-renewal of the SSC. Furthermore, spermatogonial outgrowths in the periphery of the colonies showed a significantly higher number of A spermatogonia. with a more primitive morphology under the influence of GDNF (P < 0.05). Spermatogonial stem cell transplantation experiments revealed a 2-fold increase in stem cell activity in GDNF treated spermatogonial cultures (P < 0.01). We conclude that GDNF rather than inducing proliferation, enhances self-renewal and increases survival rates of SSC in the bovine spermatogonial culture system. (c) 2005 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据