4.7 Article

Biochemical functionalization of polymeric cell substrata can alter mechanical compliance

期刊

BIOMACROMOLECULES
卷 7, 期 6, 页码 1990-1995

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bm060146b

关键词

-

向作者/读者索取更多资源

Biochemical functionalization of surfaces is an increasingly utilized mechanism to promote or inhibit adhesion of cells. To promote mammalian cell adhesion, one common functionalization approach is surface conjugation of adhesion peptide sequences such as Arg-Gly-Asp (RGD), a ligand of transmembrane integrin molecules. It is generally assumed that such functionalization does not alter the local mechanical properties of the functionalized surface, as is important to interpretations of macromolecular mechanotransduction in cells. Here, we examine this assumption systematically, through nanomechanical measurement of the nominal elastic modulus of polymer multilayer films of nanoscale thickness, functionalized with RGD through different processing routes. We find that the method of biochemical functionalization can significantly alter mechanical compliance of polymeric substrata such as weak polyelectrolyte multilayers (PEMs), increasingly utilized materials for such studies. In particular, immersed adsorption of intermediate functionalization reagents significantly decreases compliance of the PEMs considered herein, whereas polymer-on-polymer stamping of these same reagents does not alter compliance of weak PEMs. This finding points to the potential unintended alteration of mechanical properties via surface functionalization and also suggests functionalization methods by which chemical and mechanical properties of cell substrata can be controlled independently.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据