4.6 Article

Spectral element based model for wave propagation analysis in multi-wall carbon nanotubes

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijsolstr.2005.03.044

关键词

multi-wall CNT; wave propagation; spectral finite element; SVD; polynomial eigenvalue problem

向作者/读者索取更多资源

A spectrally formulated finite element is developed to study elastic waves in carbon nanotubes (CNT), where the frequency content of the exciting signal is at terahertz level. A multi-walled nanotube (MWNT) is modelled as an assemblage of Euler-Bernoulli beams connected throughout their length by distributed springs, whose stiffness is governed by the van der Waals force acting between the nanotubes. The spectral element is developed using the recently developed formulation strategy based on the solution of polynomial eigenvalue problem (PEP). A single element can model a MWNT with any number of walls. Studies are carried out to investigate the effect of the number of walls on the spectrum and dispersion relation. Effect of the number of walls on the frequency response function is investigated. Response of MWNT for terahertz level loading is analyzed for broad-band shear pulse. (c) 2005 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据