4.2 Article

Modulation of short-latency intracortical inhibition in human primary motor cortex during synchronised versus syncopated finger movements

期刊

EXPERIMENTAL BRAIN RESEARCH
卷 168, 期 1-2, 页码 287-293

出版社

SPRINGER
DOI: 10.1007/s00221-005-0205-9

关键词

movement; coordination; primary motor cortex; intracortical inhibition; transcranial magnetic stimulation

向作者/读者索取更多资源

Rhythmic movements are inherently more stable and easier to perform when they are synchronised with a periodic stimulus, as opposed to syncopated between the beats of a pacing stimulus. Although this behavioural phenomenon is well documented, its neurophysiological basis is poorly understood. In a first experiment, we demonstrated that all healthy subjects (N=8) performing index finger abduction in time with an auditory metronome exhibited transitions from syncopation to synchronisation when the metronome tempo was scaled from 0.8 to 2.0 Hz. Subjects' mean transition frequency was 1.7 +/- 0.2 Hz. In a second experiment, we used paired-pulse transcranial magnetic stimulation to examine short-latency intracortical inhibition (sICI) directed towards the first dorsal interosseous (FDI) muscle in healthy subjects (N=9) who made synchronised and syncopated phasic finger movements in time with metronome pacing of 1.0 Hz. Despite the equivalence between the patterns in terms of task performance and corticospinal excitability of FDI at this movement frequency, there was significantly greater sICI during syncopation than during synchronisation. From this result, we infer that the stability of movement patterns may be contingent upon excitability of inhibitory networks within primary motor cortex.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据