4.7 Article

A semiclassical two-temperature model for ultrafast laser heating

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2005.06.022

关键词

ultrashort laser heating; Boltzmann transport equation; semiclassical two-temperature model; electron drift velocity; electron kinetic pressure

向作者/读者索取更多资源

A semiclassical two-step heating model is proposed to investigate thermal transport in metals caused by ultrashort laser heating. Based on the Boltzmann transport equation, three equations of the conservation of number density, momentum and energy are derived for the electron subsystem. The thermal transport equation used for the phonon subsystem remains the same as that used in the phenomenological two-temperature (2T) model, including the energy exchange with hot electrons and the ultrafast thermal relaxation effect in general. The main difference between the semiclassical and the phenomenological 2T models is that the former includes the effects of electron drifting, which could result in significantly different electron and lattice temperature response from the latter for higher-intensity and shorter-pulse laser heating. (c) 2005 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据